Designing water resistant high entropy oxide materials

Mengyuan Zhang, Ying Gao, Chengmin Xie, Xiaolan Duan, Xiaoyan Lu, Kongliang Luo, Jian Ye, Xiaopeng Wang, Xinhua Gao, Qiang Niu, Pengfei Zhang, Sheng Dai

Research output: Contribution to journalArticlepeer-review

Abstract

The ubiquitous presence of moisture usually shows adverse effects on industrial catalysis. Herein, a concept of engineering entropy to design water-resistant oxide catalysts is proposed. The C3H6 oxidation by spinel ACr2O4 (A=Ni, Mg, Cu, Zn, Co) catalysts is selected as a model. Through DFT calculation, the adsorption energy of C3H6, the dissociation energy of molecular H2O on the oxide surface, and the formation energy of oxygen vacancy all suggest better performance induced by higher configurational entropy. Indeed, (Ni0.2Mg0.2Cu0.2Zn0.2Co0.2)Cr2O4 experimentally show excellent water resistance (>100 h) in C3H6 oxidation, while in sharp contrast binary oxides (e.g., NiCr2O4, CoCr2O4) are deactivated in 20 h. H2O-TPD, in-situ Raman, and in-situ FTIR all confirm the low H2O adsorption energy and strong hydrothermal stability of high entropy oxide, which is attributed to their lower Gibbs free energy. This work may inspire the rational design of water-resistant catalysts.

Original languageEnglish
Article number8306
JournalNature Communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

Fingerprint

Dive into the research topics of 'Designing water resistant high entropy oxide materials'. Together they form a unique fingerprint.

Cite this