Abstract
Designing novel complex concentrated alloys (CCAs) is an essential topic in materials science. However, due to the complicated high-dimensional component-property relationship, tuning material properties by researchers’ experience is challenging, even when guided by physical or empirical rules. Here, we adopt quantum computing (QC) technology and machine learning models to provide a proof-of-concept application of QC in physical metallurgy. We propose a quantum support vector machine (QSVM) model to predict single-phase CCAs. We show that fine-tuned quantum kernels with entanglement deliver promising performance, with a maximum accuracy of 89.4%. The QSVM model is then used to identify 1,741 lightweight CCAs jointly with a new text-mining-based method. Meanwhile, we devise a controllable approach to study the effect of noise on model performance and find that the noise level needs to be minimized for high-performance QSVM models. This study provides a practical and general approach to designing CCAs based on quantum technologies.
Original language | English |
---|---|
Journal | Matter |
DOIs | |
State | Accepted/In press - 2024 |
Keywords
- Alloy design
- language models
- MAP 2: Benchmark
- quantum computer
- quantum machine learning