Design of Radially Variant Phase-Change Material Composites

Alison Hoe, Achutha Tamraparni, Chen Zhang, Alaa Elwany, Jonathan R. Felts, Patrick J. Shamberger

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Phase-change materials (PCMs) and high-conductivity elements can be combined to form highly compact and efficient composite heat sinks. However, the design challenge presented by thermal composites composed of PCMs and high-conductivity elements remains unresolved. Herein, design guidelines are presented for radially varying cylindrical PCM composites. Numerical and analytical techniques are utilized to explore the utility and limits of optimal composite designs selecting for 1) temperature minimization, 2) specific effective heat capacity maximization, and 3) volumetric effective heat capacity maximization. Significant increases in each metric are observed when implementing radially variant designs in cylindrical geometries, especially for metrics of heat capacity. Furthermore, a hybrid approach to variant composite design is presented, allowing for the balancing of different design objectives. The utilization of a variable design under high heat flux (10 ± 1.4 W cm−2) and short melting periods (up to 50 s) is experimentally demonstrated, directly resulted in a 65% decrease in total system mass and a 200% increase in specific heat capacity while maintaining strong temperature dampening performance. In a second case study, a 23% decrease in mass is demonstrated while maintaining strong specific heat performance, emphasizing the broad utility of this approach.

Original languageEnglish
Article number2200841
JournalAdvanced Engineering Materials
Volume25
Issue number2
DOIs
StatePublished - Feb 2023
Externally publishedYes

Keywords

  • additive manufacturing
  • applied phase-change materials
  • cylindrical finned heat sink
  • optimal composite design
  • thermal energy storage

Fingerprint

Dive into the research topics of 'Design of Radially Variant Phase-Change Material Composites'. Together they form a unique fingerprint.

Cite this