Design of apertureless tips with very high plasmon field enhancement

F. Čajko, I. Tsukerman, A. Kisliuk, A. P. Sokolov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In contrast with aperture-limited Scanning Near-field Optical Microscopy, where the focusing of light is achieved only with very high attenuation, in aperture/ess near-field optics light is both focused and strongly amplified by the surface plasrnons of the probe. Although the general feasibility of this idea and the unprecedented in optics lateral resolution of ∼ 15-30 nm have already been demonstrated, the actual field enhancement has so far been well below theoretical expectations, and the useful optical signals have been weak. To bridge the gap between the "proof-of-concept" experiments and reliable optical microscopy with molecular-scale resolution, one needs to unify accurate simulation with effective measurements of the optical properties of the tips and with fabrication. We use dark-field microscopy with side collecting optics for measurements of the optical properties of the tip. The side view allows us to observe the radiation of the tip and hence to analyze its optical properties at the apex. In addition, the measured Raman signal provides an estimate of the electric field enhancement by the tip. Our simulation protocol consists of two parts: electrostatics and wave analysis. Electrostatic simulations give good qualitative predictions, are very fast and therefore conducive to multiparametric optimization. Rill wave analysis is needed to evaluate the dephasing effects and far-field signals. The Finite Element Method is used for all simulations. Various tip designs with the field enhancement ranging from ∼ 50 to over 250 (depending on various parameters), with the commensurate enhancement of the Raman signal by ∼ 454 (for gold coating) and ∼ 2704 (for silver coating), are presented and analyzed.

Original languageEnglish
Title of host publicationNanophotonics
DOIs
StatePublished - 2006
Externally publishedYes
EventNanophotonics - Strasbourg, France
Duration: Apr 3 2006Apr 5 2006

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume6195
ISSN (Print)0277-786X

Conference

ConferenceNanophotonics
Country/TerritoryFrance
CityStrasbourg
Period04/3/0604/5/06

Keywords

  • Apertureless near-field optical microscopy
  • Dark field microscopy
  • Finite element analysis
  • Plasmon enhancement
  • Side collecting optics

Fingerprint

Dive into the research topics of 'Design of apertureless tips with very high plasmon field enhancement'. Together they form a unique fingerprint.

Cite this