Abstract
Lithium metal batteries (LMBs) are considered as promising high energy density batteries. However, they still suffer from poor cyclability due to the instability of solid electrolyte interphases (SEIs) and Li dendrite issues. Herein, a novel 3D densely packed multifunctional crosslinked gel polymer electrolyte (PHGPE) has been synthesized by in situ copolymerization of pentaerythritol tetraacrylate and 2-hydroxyethyl acrylate in a liquid electrolyte via a thermal initiation method. Due to intermolecular hydrogen bonding in the frameworks, the PHGPE exhibits a 3D compact-stacked and crosslinked micro-sphere structure, which benefits the construction of homogeneous Li+ flux, enabling uniform Li plating/stripping and formation of robust SEIs onto the lithium electrode. Benefiting from the above advantages, symmetric Li cells in the PHGPE deliver excellent cyclabilities of 6000 h at a current density of 1 mA cm-2 (1 mA h cm-2) and 7700 h at 0.5 mA cm-2 (2 mA h cm-2). Moreover, the PHGPE has such a wide electrochemical window that it is compatible with both high-voltage LiNi0.8Co0.1Mn0.1O2 and sulfur cathodes to realize long cycle life. Additionally, a LiFePO4 based pouch size LMB also presents promising performance. Therefore, this study of the PHGPE has opened a new avenue for high-performance LMBs with excellent versatility and practicality.
Original language | English |
---|---|
Pages (from-to) | 12563-12574 |
Number of pages | 12 |
Journal | Journal of Materials Chemistry A |
Volume | 10 |
Issue number | 23 |
DOIs | |
State | Published - May 16 2022 |
Funding
This work is supported by the Natural Science Foundation of China (51802122), Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, and Jianghan University (JDGD-201811 and JDGD-202007). The research of R. T., S. D. and X.-G. S. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract number DE-AC05-00OR22725.