TY - GEN
T1 - Design and computational analysis of diaphragm based piezoresistive pressure sensors for integration into undergraduate curriculum
AU - Plotkowski, Alexander Joseph
AU - Jiao, Lihong
AU - Barakat, Nael
PY - 2012
Y1 - 2012
N2 - In order to expand undergraduate education in microelectromechanical systems (MEMS), and nanotechnology, a series of sensors were designed with the intent of integrating the design process into the project portion of a micro/nano systems course. The majority of the design work was focused around piezoresistive, diaphragm-based pressure sensors, utilizing multiple diaphragm sizes and geometries. These sensors were chosen for their geometrical simplicity and their ability to be manufactured using available photolithographic techniques. In order to gain a deeper understanding of the stress distribution in these sensors, leading to better design decisions, the Finite Element Analysis (FEA) technique was used. Results from this analysis were validated using analytical models available in the literature. Once this validation was accomplished, multiple iterations of FEA were performed in order to gain further understanding of the stress variation relative to diaphragm specifications. The results of these simulations were used to optimize the placement of the piezoresistors on the diaphragm and to assess the effect of process variation on the performance of the device. This analysis procedure aided in the design of pressure sensors with different sets of diaphragm geometries. The design and analysis procedures were documented and followed by students enrolled in the Nanosystems Engineering course to design and analyze the sensor type of their choice.
AB - In order to expand undergraduate education in microelectromechanical systems (MEMS), and nanotechnology, a series of sensors were designed with the intent of integrating the design process into the project portion of a micro/nano systems course. The majority of the design work was focused around piezoresistive, diaphragm-based pressure sensors, utilizing multiple diaphragm sizes and geometries. These sensors were chosen for their geometrical simplicity and their ability to be manufactured using available photolithographic techniques. In order to gain a deeper understanding of the stress distribution in these sensors, leading to better design decisions, the Finite Element Analysis (FEA) technique was used. Results from this analysis were validated using analytical models available in the literature. Once this validation was accomplished, multiple iterations of FEA were performed in order to gain further understanding of the stress variation relative to diaphragm specifications. The results of these simulations were used to optimize the placement of the piezoresistors on the diaphragm and to assess the effect of process variation on the performance of the device. This analysis procedure aided in the design of pressure sensors with different sets of diaphragm geometries. The design and analysis procedures were documented and followed by students enrolled in the Nanosystems Engineering course to design and analyze the sensor type of their choice.
KW - MEMS laboratory
KW - Nanotechnology education
KW - Pressure sensors
UR - http://www.scopus.com/inward/record.url?scp=85029057478&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85029057478
SN - 9780878232413
T3 - ASEE Annual Conference and Exposition, Conference Proceedings
BT - 119th ASEE Annual Conference and Exposition
PB - American Society for Engineering Education
T2 - 119th ASEE Annual Conference and Exposition
Y2 - 10 June 2012 through 13 June 2012
ER -