TY - JOUR
T1 - Design and Analysis of the Open-Surface Slow Li Flow Divertor and Comparison to the Fast Li Flow Divertor
AU - Jiang, Yuchen
AU - Aduloju, Sunday
AU - Smolentsev, Sergey
N1 - Publisher Copyright:
© This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy(DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (“https://url.us.m.mimecastprotect.com/s/rDriCDkY05i3Aw21zSAigUjxEcO?domain=energy.gov”https://www.energy.gov/doe-public-access-plan).
PY - 2025
Y1 - 2025
N2 - In the ongoing U.S. project, “Liquid Metal Plasma Facing Components,” sponsored by the U.S. Department of Energy, efforts have been taken to develop two open-surface divertor designs for the Fusion Nuclear Science Facility using liquid lithium (Li) as a heat and particle flux removal media. The main focus of this study is the design and analysis of a slow (~1 mm/s) and thin (<1 mm) open-surface Li flow divertor with a Li-cooled substrate, which is then compared with an earlier design of a fast (up to 10 m/s) and thick (~0.5 cm) Li flow divertor with the substrate cooled with helium. The slow Li flow divertor design is based on the original LiWall concept developed at the Princeton Plasma Physics Laboratory. Such a thin and slow Li layer can remove the particle flux by reducing the recycling flux, while the heat flux is removed mainly through the heat sink located beneath. In the present study, the heat sink is provided through a Li cooling flow inside the substrate of reduced activation ferritic/martensitic steel. By performing a multiphysics analysis with COMSOL that included liquid-metal magnetohydrodynamics (MHD), heat transfer, and structural mechanics, the impact of various factors on the divertor heat removal capability, such as Li flow velocity, MHD effects, and inlet velocity boundary condition, were examined. Based on comparisons of the two divertor designs, it was shown that the fast-flow divertor significantly outperformed the slow-flow design, whose heat removal capability was limited to ~1 to 2 MW/m2.
AB - In the ongoing U.S. project, “Liquid Metal Plasma Facing Components,” sponsored by the U.S. Department of Energy, efforts have been taken to develop two open-surface divertor designs for the Fusion Nuclear Science Facility using liquid lithium (Li) as a heat and particle flux removal media. The main focus of this study is the design and analysis of a slow (~1 mm/s) and thin (<1 mm) open-surface Li flow divertor with a Li-cooled substrate, which is then compared with an earlier design of a fast (up to 10 m/s) and thick (~0.5 cm) Li flow divertor with the substrate cooled with helium. The slow Li flow divertor design is based on the original LiWall concept developed at the Princeton Plasma Physics Laboratory. Such a thin and slow Li layer can remove the particle flux by reducing the recycling flux, while the heat flux is removed mainly through the heat sink located beneath. In the present study, the heat sink is provided through a Li cooling flow inside the substrate of reduced activation ferritic/martensitic steel. By performing a multiphysics analysis with COMSOL that included liquid-metal magnetohydrodynamics (MHD), heat transfer, and structural mechanics, the impact of various factors on the divertor heat removal capability, such as Li flow velocity, MHD effects, and inlet velocity boundary condition, were examined. Based on comparisons of the two divertor designs, it was shown that the fast-flow divertor significantly outperformed the slow-flow design, whose heat removal capability was limited to ~1 to 2 MW/m2.
KW - Divertor
KW - liquid metal
KW - magnetohydrodynamics
KW - plasma-facing components
UR - https://www.scopus.com/pages/publications/105000453647
U2 - 10.1080/15361055.2025.2454154
DO - 10.1080/15361055.2025.2454154
M3 - Article
AN - SCOPUS:105000453647
SN - 1536-1055
JO - Fusion Science and Technology
JF - Fusion Science and Technology
ER -