Abstract
Current plasma-facing components (PFCs) used in helium-cooled divertor modules are complex structures with tungsten tile, steel sleeve components, and cartridges, all assembled in a helium-cooled multiple jet (HEMJ) structure. The goal of this project is to simplify the complex PFC design using additive manufacturing techniques to create a single integrated tungsten test article. Apart from the flexibility this opens up in exploring a wide array of geometries for the article, having a single integrated article significantly reduces the number of joints and parts in the article, thus reducing chances of leaks. A process called electron beam melting has shown to produce very high-density samples and unique geometries, enabling HEMJ or similar designs. To validate and optimize this novel design, the model underwent a series of computational fluid dynamics and finite element analysis simulations to replicate steady-state heat flux in the divertors. The simulations presented in this study consider a steady-state base heat flux of 5 MW/m2, with water serving as the coolant. Future research will explore the use of helium as a coolant, simulate edge-localized-mode conditions, and include experimental validation. Since 3D-printed tungsten is anisotropic, the build direction versus build plane of the article are taken into consideration for the test article strength. Because of the high operating temperatures and low ductility of tungsten, thermal creep and brittle fracture are important failure mechanisms to consider. The cap is evaluated with various flow velocities and nozzle diameters, and an optimal design choice is made for which this cap will survive the divertor conditions with a conservative safety margin.
| Original language | English |
|---|---|
| Pages (from-to) | 661-670 |
| Number of pages | 10 |
| Journal | Fusion Science and Technology |
| Volume | 81 |
| Issue number | 7 |
| DOIs | |
| State | Published - 2025 |
Funding
This research is sponsored by the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DEAC05- 00OR22725 with UT-Battelle, LLC.This manuscript has been authored by UT-Battelle, LLC under contract number DE-AC05-00OR22725 with the U.S. Department of Energy. The US Government retains for itself, and others acting on its behalf, a paid-up, non-exclusive, and irrevocable worldwide licence in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- Divertor
- cooling
- high heat flux
- tungsten