TY - JOUR
T1 - Defect propagation in one-, two-, and three-dimensional compounds doped by magnetic atoms
AU - Furrer, A.
AU - Podlesnyak, A.
AU - Krämer, K. W.
AU - Strässle, Th
N1 - Publisher Copyright:
© 2014 American Physical Society.
PY - 2014/10/29
Y1 - 2014/10/29
N2 - Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMnxMg1-xBr3, K2MnxZn1-xF4, and KMnxZn1-xF3 (x≤0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms, which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r2, 1/r, and constant (for three-, two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. The observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.
AB - Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMnxMg1-xBr3, K2MnxZn1-xF4, and KMnxZn1-xF3 (x≤0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms, which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r2, 1/r, and constant (for three-, two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. The observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.
UR - http://www.scopus.com/inward/record.url?scp=84912006565&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.90.144434
DO - 10.1103/PhysRevB.90.144434
M3 - Article
AN - SCOPUS:84912006565
SN - 1098-0121
VL - 90
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 14
M1 - 144434
ER -