Abstract
A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools.
Original language | English |
---|---|
Pages | 3779-3784 |
Number of pages | 6 |
State | Published - 1999 |
Event | International Joint Conference on Neural Networks (IJCNN'99) - Washington, DC, USA Duration: Jul 10 1999 → Jul 16 1999 |
Conference
Conference | International Joint Conference on Neural Networks (IJCNN'99) |
---|---|
City | Washington, DC, USA |
Period | 07/10/99 → 07/16/99 |