Abstract
How do we forecast an emerging pandemic in real time in a purely data-driven manner? How to leverage rich heterogeneous data based on various signals such as mobility, testing, and/or disease exposure for forecasting? How to handle noisy data and generate uncertainties in the forecast? In this paper, we present DEEPCOVID, an operational deep learning framework designed for real-time COVID-19 forecasting. DEEPCOVID works well with sparse data and can handle noisy heterogeneous data signals by propagating the uncertainty from the data in a principled manner resulting in meaningful uncertainties in the forecast. The deployed framework also consists of modules for both real-time and retrospective exploratory analysis to enable interpretation of the forecasts. Results from real-time predictions (featured on the CDC website and FiveThirtyEight.com) since April 2020 indicates that our approach is competitive among the methods in the COVID-19 Forecast Hub, especially for short-term predictions.
Original language | English |
---|---|
Title of host publication | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 15393-15400 |
Number of pages | 8 |
ISBN (Electronic) | 9781713835974 |
State | Published - 2021 |
Externally published | Yes |
Event | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online Duration: Feb 2 2021 → Feb 9 2021 |
Publication series
Name | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
Volume | 17B |
Conference
Conference | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
City | Virtual, Online |
Period | 02/2/21 → 02/9/21 |
Funding
We would like to thank the anonymous reviewers for their helpful suggestions which improved the paper. This paper is based on work partially supported by the NSF (Expeditions CCF-1918770, CAREER IIS-2028586, RAPID IIS-2027862, Medium IIS-1955883, NRT DGE-1545362), CDC MInD program, ORNL and funds/computing resources from Georgia Tech and GTRI. B. A. was in part supported by the CDC MInD-Healthcare U01CK000531-Supplement.