Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks

Arindam Chowdhury, Gunjan Verma, Ananthram Swami, Santiago Segarra

Research output: Contribution to journalArticlepeer-review

Abstract

We develop an efficient and near-optimal solution for beamforming in multi-user multiple-input-multiple-output single-hop wireless ad-hoc interference networks. Inspired by the weighted minimum mean squared error (WMMSE) method, a classical approach to solving this problem, and the principle of algorithm unfolding, we present unfolded WMMSE (UWMMSE) for MU-MIMO. This method learns a parameterized functional transformation of key WMMSE variables using graph neural networks (GNNs), where the channel and interference components of a wireless network constitute the underlying graph. These GNNs are trained through gradient descent on a network utility metric using multiple instances of the beamforming problem. Comprehensive experimental analyses illustrate the superiority of UWMMSE over the classical WMMSE and state-of-the-art learning-based methods in terms of performance, generalizability, and robustness.

Original languageEnglish
Pages (from-to)4889-4903
Number of pages15
JournalIEEE Transactions on Wireless Communications
Volume23
Issue number5
DOIs
StatePublished - May 1 2024
Externally publishedYes

Keywords

  • algorithm unfolding
  • Beamforming
  • complex-valued graph neural networks
  • WMMSE

Fingerprint

Dive into the research topics of 'Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks'. Together they form a unique fingerprint.

Cite this