Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform

R. Kannan, A. V. Ievlev, N. Laanait, M. A. Ziatdinov, R. K. Vasudevan, S. Jesse, S. V. Kalinin

Research output: Contribution to journalReview articlepeer-review

44 Scopus citations

Abstract

Many spectral responses in materials science, physics, and chemistry experiments can be characterized as resulting from the superposition of a number of more basic individual spectra. In this context, unmixing is defined as the problem of determining the individual spectra, given measurements of multiple spectra that are spatially resolved across samples, as well as the determination of the corresponding abundance maps indicating the local weighting of each individual spectrum. Matrix factorization is a popular linear unmixing technique that considers that the mixture model between the individual spectra and the spatial maps is linear. Here, we present a tutorial paper targeted at domain scientists to introduce linear unmixing techniques, to facilitate greater understanding of spectroscopic imaging data. We detail a matrix factorization framework that can incorporate different domain information through various parameters of the matrix factorization method. We demonstrate many domain-specific examples to explain the expressivity of the matrix factorization framework and show how the appropriate use of domain-specific constraints such as non-negativity and sum-to-one abundance result in physically meaningful spectral decompositions that are more readily interpretable. Our aim is not only to explain the off-the-shelf available tools, but to add additional constraints when ready-made algorithms are unavailable for the task. All examples use the scalable open source implementation from https://github.com/ramkikannan/nmflibrary that can run from small laptops to supercomputers, creating a user-wide platform for rapid dissemination and adoption across scientific disciplines.

Original languageEnglish
Article number6
JournalAdvanced Structural and Chemical Imaging
Volume4
Issue number1
DOIs
StatePublished - Dec 1 2018

Funding

A portion of this research related to the Matrix Factorization library was partially funded by the Oak Ridge National Laboratory Director’s Research and Development fund (RK). A portion of this research was sponsored by the U.S. Department of Energy (DOE), Office of Science (OS), Basic Energy Sciences, Materials Sciences and Engineering Division (RKV, SVK, MAZ). A portion of this research was conducted and partially supported (SJ, AVI) at the Center for Nanophase Materials Sciences, which is a US DOE Office of Science User Facility. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy. NL acknowledges support from the Eugene P. Wigner Fellowship Program (ORNL). XDM data were acquired at the Advanced Photon Source, a US DOE User facility at Argonne National Laboratory. MAZ thanks P. Maksymovych (ORNL) and J. Wang (LANL) for their assistance in STM measurements. RKV gratefully acknowledges A. Borisevich (ORNL) and Q. He (Cardiff University) for use of STEM image of the oxide catalyst. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan).

Keywords

  • Big data
  • High performance
  • Image segmentation
  • Matrix factorization
  • Scanning probe microscopy
  • Unmixing

Fingerprint

Dive into the research topics of 'Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform'. Together they form a unique fingerprint.

Cite this