Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids

J. R. Sangoro, C. Iacob, A. L. Agapov, Y. Wang, S. Berdzinski, H. Rexhausen, V. Strehmel, C. Friedrich, A. P. Sokolov, F. Kremer

Research output: Contribution to journalArticlepeer-review

122 Scopus citations

Abstract

Charge transport and structural dynamics in low molecular weight and polymerized 1-vinyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) are investigated by a combination of broadband dielectric spectroscopy, dynamic mechanical spectroscopy and differential scanning calorimetry. While the dc conductivity and fluidity exhibit practically identical temperature dependence for the non-polymerized IL, a significant decoupling of ionic conduction from structural dynamics is observed for the polymerized IL. In addition, the dc conductivity of the polymerized IL exceeds that of its molecular counterpart by four orders of magnitude at their respective calorimetric glass transition temperatures. This is attributed to the unusually high mobility of the anions especially at lower temperatures when the structural dynamics is significantly slowed down. A simple physical explanation of the possible origin of the remarkable decoupling of ionic conductivity from structural dynamics is proposed.

Original languageEnglish
Pages (from-to)3536-3540
Number of pages5
JournalSoft Matter
Volume10
Issue number20
DOIs
StatePublished - May 28 2014

Fingerprint

Dive into the research topics of 'Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids'. Together they form a unique fingerprint.

Cite this