DC Link Capacitor Reduction with Feedforward Control in Series-Series Compensated Wireless Power Transfer Systems

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

This paper presents the use of feedforward control to reduce the input side DC link capacitance of series-series compensated wireless power transfer (WPT) systems. Compared to conventional control schemes for WPT systems, the proposed feedforward-based approach achieves significant reduction in the DC link capacitor without any complicated voltage or current sensing requirements from the secondary side. This results in more compact hardware architecture. The proposed method shows minimal increase in the turn-on switching loss of the inverter. The switching loss is analyzed, and detailed results are presented relating the switching loss to the DC link capacitance and voltage ripple for proper tradeoff between losses and capacitor size. Simulation and experimental results presented validate the proposed scheme.

Original languageEnglish
Title of host publicationAPEC 2020 - 35th Annual IEEE Applied Power Electronics Conference and Exposition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3540-3546
Number of pages7
ISBN (Electronic)9781728148298
DOIs
StatePublished - Mar 2020
Event35th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2020 - New Orleans, United States
Duration: Mar 15 2020Mar 19 2020

Publication series

NameConference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC
Volume2020-March

Conference

Conference35th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2020
Country/TerritoryUnited States
CityNew Orleans
Period03/15/2003/19/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • DC link capacitor minimization
  • Wireless power transfer
  • feedforward control
  • series-series compensation
  • soft-switching
  • switching loss

Fingerprint

Dive into the research topics of 'DC Link Capacitor Reduction with Feedforward Control in Series-Series Compensated Wireless Power Transfer Systems'. Together they form a unique fingerprint.

Cite this