Data movement in data-intensive high performance computing

Pietro Cicotti, Sarp Oral, Gokcen Kestor, Roberto Gioiosa, Shawn Strande, Michela Taufer, James H. Rogers, Hasan Abbasi, Jason Hill, Laura Carringtonc

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

3 Scopus citations

Abstract

The cost of executing a floating point operation has been decreasing for decades at a much higher rate than that of moving data. Bandwidth and latency, two key metrics that determine the cost of moving data, have degraded significantly relative to processor cycle time and execution rate. Despite the limitation of submicron processor technology and the end of Dennard scaling, this trend will continue in the short-term making data movement a performance-limiting factor and an energy/power efficiency concern. Even more so in the context of largescale and data-intensive systems and workloads. This chapter gives an overview of the aspects of moving data across a system, from the storage system to the computing system down to the node and processor level, with case study and contributions from researchers at the San Diego Supercomputer Center, the Oak Ridge National Laboratory, the Pacific Northwest National Laboratory, and the University of Delaware.

Original languageEnglish
Title of host publicationConquering Big Data with High Performance Computing
PublisherSpringer International Publishing
Pages31-58
Number of pages28
ISBN (Electronic)9783319337425
ISBN (Print)9783319337401
DOIs
StatePublished - Jan 1 2016

Fingerprint

Dive into the research topics of 'Data movement in data-intensive high performance computing'. Together they form a unique fingerprint.

Cite this