Abstract
The Cryogenic Moderator System (CMS) is responsible for maintaining a steady flow of cold neutrons for numerous physics experiments at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory (ORNL). Sudden losses in beam power, known as beam trips, cause a major disturbance to the CMS due to large step changes in cooling demands. Ongoing efforts on upgrading the neutron beam power from 1.4 to 2.0 MW are expected to generate larger transients that can further strain the CMS subsystems if they are not properly controlled. To manage such disturbances, four flow valves and one electric heater are adjusted by five decentralized proportional-integral-derivative (PID) controllers. However, the original PID gains were calibrated empirically based only on tracking performance and not based on disturbance rejection. To address this issue without compromising current CMS operations, a control-oriented model was developed to recalibrate the PID controllers offline. The zero-dimensional (0-D) model was based on simple physics-based principles and data-driven system identification techniques. The CMS was broken into several subsystems for analysis, each of which corresponds to a parametric model tied to the thermodynamic states of the working fluid. The model parameters were identified using the nonlinear least squares method where the residuals were calculated from available sensor data. Simulation results show that the proposed model can capture the dynamics of the CMS at steady state and during beam trips.
Original language | English |
---|---|
Title of host publication | IFAC-PapersOnLine |
Editors | Hideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita |
Publisher | Elsevier B.V. |
Pages | 3986-3993 |
Number of pages | 8 |
Edition | 2 |
ISBN (Electronic) | 9781713872344 |
DOIs | |
State | Published - Jul 1 2023 |
Externally published | Yes |
Event | 22nd IFAC World Congress - Yokohama, Japan Duration: Jul 9 2023 → Jul 14 2023 |
Publication series
Name | IFAC-PapersOnLine |
---|---|
Number | 2 |
Volume | 56 |
ISSN (Electronic) | 2405-8963 |
Conference
Conference | 22nd IFAC World Congress |
---|---|
Country/Territory | Japan |
City | Yokohama |
Period | 07/9/23 → 07/14/23 |
Funding
This material is based upon work supported by the US Department of Energy, Office of Science, Basic Energy Sciences program under contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This material is based upon work supported by the US Department of Energy, Office of Science, Basic Energy Sciences program under contract DE-AC05-00OR22725.
Keywords
- System identification
- control-oriented model
- cryogenic refrigeration