Data-driven Humanitarian Mapping: Harnessing Human-Machine Intelligence for High-Stake Public Policy and Resilience Planning

Snehalkumar Neil S. Gaikwad, Shankar Iyer, Dalton Lunga, Elizabeth Bondi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations
Original languageEnglish
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages4125-4126
Number of pages2
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Externally publishedYes
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period08/14/2108/18/21

Keywords

  • algorithmic decision making and ethics
  • computational social science
  • data-driven humanitarian actions
  • fair and interpretable machine learning
  • human-centered data science
  • public policy
  • remote sensing
  • social computing
  • sustainable development

Cite this