Dark Energy Survey Year 3 results: Constraints on extensions to ΛcDM with weak lensing and galaxy clustering

(DES Collaboration)

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

We constrain six possible extensions to the Λ cold dark matter (CDM) model using measurements from the Dark Energy Survey's first three years of observations, alone and in combination with external cosmological probes. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data vectors and blind analyses of real data to validate the robustness of our results to astrophysical and modeling systematic errors. In many cases, constraining power is limited by the absence of theoretical predictions beyond the linear regime that are reliable at our required precision. The ΛCDM extensions are dark energy with a time-dependent equation of state, nonzero spatial curvature, additional relativistic degrees of freedom, sterile neutrinos with eV-scale mass, modifications of gravitational physics, and a binned σ8(z) model which serves as a phenomenological probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find (wp,wa)=(-0.99-0.17+0.28,-0.9±1.2) at 68% confidence with zp=0.24 from the DES measurements alone, and (wp,wa)=(-1.03-0.03+0.04,-0.4-0.3+0.4) with zp=0.21 for the combination of all data considered. Curvature constraints of ωk=0.0009±0.0017 and effective relativistic species Neff=3.10-0.16+0.15 are dominated by external data, though adding DES information to external low-redshift probes tightens the ωk constraints that can be made without cosmic microwave background observables by 20%. For massive sterile neutrinos, DES combined with external data improves the upper bound on the mass meff by a factor of 3 compared to previous analyses, giving 95% limits of (ΔNeff,meff)≤(0.28,0.20 eV) when using priors matching a comparable Planck analysis. For modified gravity, we constrain changes to the lensing and Poisson equations controlled by functions ς(k,z)=ς0ωΛ(z)/ωΛ,0 and μ(k,z)=μ0ωΛ(z)/ωΛ,0, respectively, to ς0=0.6-0.5+0.4 from DES alone and (ς0,μ0)=(0.04±0.05,0.08-0.19+0.21) for the combination of all data, both at 68% confidence. Overall, we find no significant evidence for physics beyond ΛCDM.

Original languageEnglish
Article number083504
JournalPhysical Review D
Volume107
Issue number8
DOIs
StatePublished - Apr 15 2023

Funding

The analysis made use of the software tools s ci p y , astropy , n um p y , matplotlib , camb , mgcamb , g et d ist , multinest , polychord , anesthetic , c osmo sis , and gnu parallel . Elements of the DES modeling pipeline additionally use c osmo l ike including c osmo c ov , halofit , fast-pt , and nicaea . This work was supported through computational resources and services provided by the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Award No. DE-AC02-05CH11231; by the Sherlock cluster, supported by Stanford University and the Stanford Research Computing Center; by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP) and by the JPL ITSD High Performance Computing group. Funding for the DES projects has been provided by the U.S. Department of Energy, U.S. National Science Foundation, Ministry of Science and Education of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and Astro-Particle Physics at The Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, Deutsche Forschungsgemeinschaft, and Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, University of California at Santa Cruz, University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, University of Chicago, University College London, DES-Brazil Consortium, University of Edinburgh, Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, University of Illinois at Urbana-Champaign, Institut de Ciències de l’Espai (IEEC/CSIC), Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, University of Michigan, NSF’s NOIRLab, University of Nottingham, The Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under Grants No. ESP2017-89838, No. PGC2018-094773, No. PGC2018-102021, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant Agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq Grant No. 465376/2014-2). This manuscript has been co-authored by employees of Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Fingerprint

Dive into the research topics of 'Dark Energy Survey Year 3 results: Constraints on extensions to ΛcDM with weak lensing and galaxy clustering'. Together they form a unique fingerprint.

Cite this