Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck

DES and SPT Collaborations

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

We measure the cross-correlation between redMaGiC galaxies selected from the Dark Energy Survey (DES) year 1 data and gravitational lensing of the cosmic microwave background (CMB) reconstructed from South Pole Telescope (SPT) and Planck data over 1289 deg2. When combining measurements across multiple galaxy redshift bins spanning the redshift range of 0.15<z<0.90, we reject the hypothesis of no correlation at 19.9σ significance. When removing small-scale data points where thermal Sunyaev-Zel'dovich signal and nonlinear galaxy bias could potentially bias our results, the detection significance is reduced to 9.9σ. We perform a joint analysis of galaxy-CMB lensing cross-correlations and galaxy clustering to constrain cosmology, finding ωm=0.276-0.030+0.029 and S8=σ8ωm/0.3=0.800-0.094+0.090. We also perform two alternate analyses aimed at constraining only the growth rate of cosmic structure as a function of redshift, finding consistency with predictions from the concordance ΛCDM model. The measurements presented here are part of a joint cosmological analysis that combines galaxy clustering, galaxy lensing and CMB lensing using data from DES, SPT and Planck.

Original languageEnglish
Article number043501
JournalPhysical Review D
Volume100
Issue number4
DOIs
StatePublished - Aug 1 2019

Funding

This paper has gone through internal review by the DES Collaboration. Y. O. acknowledges funding from the Kavli Foundation, the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program. E. B. is partially supported by the U.S. Department of Energy Grant No. DE-SC0007901. C. C. was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through Grant No. NSF PHY-1125897 and an endowment from Kavli Foundation and its founder Fred Kavli. C. R. acknowledges support from a Australian Research Council Future Fellowship (FT150100074). B. B. is supported by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program. The South Pole Telescope program is supported by the National Science Foundation through Grant No. PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant No. PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation through Grant No. GBMF#947 to the University of Chicago. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. Argonne National Laboratory’s work was supported under U.S. Department of Energy Contract No. DE-AC02-06CH11357. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2015-71825, No. ESP2015-66861, No. FPA2015-68048, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant Agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through Project No. CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq Grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Computations were made on the supercomputer Guillimin from McGill University, managed by Calcul Québec and Compute Canada. The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI), the ministère de l’Économie, de la science et de l’innovation du Québec (MESI) and the Fonds de recherche du Québec—Nature et technologies (FRQ-NT). This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (Grants No. OCI-0725070 and No. ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. We acknowledge the use of many python packages: Astropy , a community-developed core Python package for astronomy , camb , CosmoSIS , GetDist , HEALPix , IPython , Matplotlib , NumPy and SciPy , Quicklens , and TreeCorr .

FundersFunder number
Brazilian Instituto Nacional de Ciência e Tecnologia
Collaborating Institutions in the Dark Energy SurveyAST-1138766, AST-1536171
Fermi Research Alliance, LLCDe-AC02-07CH11359
INCT
Kavli Institute for Cosmological Physics at the University of Chicago
Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University
National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign
Science and Technology Facilities Council of the United Kingdom
National Science FoundationPHY-1125897, PLR-1248097, PHY-0114422
U.S. Department of EnergyDE-SC0007901
National Aeronautics and Space AdministrationDE-AC02-06CH11357
Gordon and Betty Moore Foundation947
Kavli Foundation
Office of Science
High Energy Physics
Ohio State University
University of Chicago
Canadian Institute for Advanced Research
Seventh Framework Programme240672, 306478, 291329
Higher Education Funding Council for England
Ministère de l'Économie, de la Science et de l'Innovation - Québec
Engineering Research Centers
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation
European Commission
European Research Council
Australian Research CouncilCE110001020, FT150100074
Deutsche Forschungsgemeinschaft
Canada Research Chairs
Generalitat de Catalunya
Fonds de recherche du Québec – Nature et technologiesOCI-0725070, ACI-1238993
Ministerio de Economía y CompetitividadSEV-2016-0588, SEV-2016-0597, ESP2015-66861, MDM-2015-0509, FPA2015-68048, AYA2015-71825
Ministério da Ciência, Tecnologia e Inovação
Conselho Nacional de Desenvolvimento Científico e Tecnológico465376/2014-2
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Financiadora de Estudos e Projetos
Ministry of Education and Science of Ukraine
European Regional Development Fund

    Fingerprint

    Dive into the research topics of 'Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck'. Together they form a unique fingerprint.

    Cite this