Dark Energy Survey Year 1 results: Constraints on intrinsic alignments and their colour dependence from galaxy clustering and weak lensing

S. Samuroff, J. Blazek, M. A. Troxel, N. MacCrann, E. Krause, C. D. Leonard, J. Prat, D. Gruen, S. Dodelson, T. F. Eifler, M. Gatti, W. G. Hartley, B. Hoyle, P. Larsen, J. Zuntz, T. M.C. Abbott, S. Allam, J. Annis, G. M. Bernstein, E. BertinS. L. Bridle, D. Brooks, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, C. E. Cunha, L. N. Da Costa, C. Davis, J. De Vicente, D. L. DePoy, S. Desai, H. T. Diehl, J. P. Dietrich, P. Doel, B. Flaugher, P. Fosalba, J. Frieman, J. García-Bellido, E. Gaztanaga, D. W. Gerdes, R. A. Gruendl, J. Gschwend, G. Gutierrez, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, N. Kuropatkin, M. Lima, M. A.G. Maia, M. March, J. L. Marshall, P. Martini, P. Melchior, F. Menanteau, C. J. Miller, R. Miquel, R. L.C. Ogando, A. A. Plazas, E. Sanchez, V. Scarpine, R. Schindler, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, E. Sheldon, M. Smith, F. Sobreira, E. Suchyta, G. Tarle, D. Thomas, V. Vikram

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

We perform a joint analysis of intrinsic alignments and cosmology using tomographic weak lensing, galaxy clustering, and galaxy–galaxy lensing measurements from Year 1 (Y1) of the Dark Energy Survey. We define early- and late-type subsamples, which are found to pass a series of systematics tests, including for spurious photometric redshift error and point spread function correlations. We analyse these split data alongside the fiducial mixed Y1 sample using a range of intrinsic alignment models. In a fiducial non-linear alignment model analysis, assuming a flat cold dark matter cosmology, we find a significant difference in intrinsic alignment amplitude, with early-type galaxies favouring AIA = 2.38+00.3231 and late-type galaxies consistent with no intrinsic alignments at 0.05+00.1009. The analysis is repeated using a number of extended model spaces, including a physically motivated model that includes both tidal torquing and tidal alignment mechanisms. In multiprobe likelihood chains in which cosmology, intrinsic alignments in both galaxy samples and all other relevant systematics are varied simultaneously, we find the tidal alignment and tidal torquing parts of the intrinsic alignment signal have amplitudes A1 = 2.66+00.6766, A2 = −2.94+11.9483, respectively, for early-type galaxies and A1 = 0.62+00.4141, A2 = −2.26+11.3016 for late-type galaxies. In the full (mixed) Y1 sample the best constraints are A1 = 0.70+00.4138, A2 = −1.36+11.0841. For all galaxy splits and IA models considered, we report cosmological parameter constraints consistent with the results of the main DES Y1 cosmic shear and multiprobe cosmology papers.

Original languageEnglish
Pages (from-to)5453-5482
Number of pages30
JournalMonthly Notices of the Royal Astronomical Society
Volume489
Issue number4
DOIs
StatePublished - Nov 11 2019

Funding

The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-88861, FPA2015-68048, SEV-2012-0234, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union\u2019s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAAS-TRO), through project number CE110001020. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac\u00B8\u00E3o Carlos Chagas Filho de Amparo \u00E0 Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient\u00EDfico e Tecnol\u00F3gico and the Minist\u00E9rio da Ci\u00EAncia, Tecnologia e Inovac\u00B8\u00E3o, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Support for DG was provided by NASA through Einstein Postdoctoral Fellowship grant number PF5-160138 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. JB is supported by an SNSF Ambizione Fellowship.

Keywords

  • Cosmological parameters
  • Cosmology: observations
  • Galaxies: statistics
  • Gravitational lensing: weak

Fingerprint

Dive into the research topics of 'Dark Energy Survey Year 1 results: Constraints on intrinsic alignments and their colour dependence from galaxy clustering and weak lensing'. Together they form a unique fingerprint.

Cite this