TY - GEN
T1 - Damage precursor assessment in aerospace structural materials
AU - Cole, Daniel P.
AU - An, Ke
AU - Haynes, Robert A.
AU - Henry, Todd C.
AU - Chen, Yan
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - The focus of this study was to apply a robust inspection technique for monitoring damage nucleation and propagation in 7075 aluminum alloy specimens exposed to cyclic loading. A previously developed specimen, linearly tapered in width along the length, was subjected to a sinusoidal tension-tension load while conductivity and strain were measured in-situ. Ex-situ measurements of modulus, hardness, surface potential, digital image correlation strain field, and neutron diffraction were made as a function of fatigue cycles. It is hypothesized that varying levels of induced stress along the length due to equal-force but varying area along the length will create a record of damage which can be probed to intuit a temporal history for the specimen. Baseline, intermediate, and failure sensor measurements for several specimens were compared and analyzed as a function of applied stress (varied linearly along the length) and fatigue cycles (constant). Mechanisms of damage nucleation and propagation due to fatigue cycling are discussed with an emphasis on which inspection methods are most promising for improving structural durability and state monitoring.
AB - The focus of this study was to apply a robust inspection technique for monitoring damage nucleation and propagation in 7075 aluminum alloy specimens exposed to cyclic loading. A previously developed specimen, linearly tapered in width along the length, was subjected to a sinusoidal tension-tension load while conductivity and strain were measured in-situ. Ex-situ measurements of modulus, hardness, surface potential, digital image correlation strain field, and neutron diffraction were made as a function of fatigue cycles. It is hypothesized that varying levels of induced stress along the length due to equal-force but varying area along the length will create a record of damage which can be probed to intuit a temporal history for the specimen. Baseline, intermediate, and failure sensor measurements for several specimens were compared and analyzed as a function of applied stress (varied linearly along the length) and fatigue cycles (constant). Mechanisms of damage nucleation and propagation due to fatigue cycling are discussed with an emphasis on which inspection methods are most promising for improving structural durability and state monitoring.
UR - http://www.scopus.com/inward/record.url?scp=85057282227&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2018-7908
DO - 10.1115/SMASIS2018-7908
M3 - Conference contribution
AN - SCOPUS:85057282227
T3 - ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
BT - Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
Y2 - 10 September 2018 through 12 September 2018
ER -