Cyclic oxidation behavior of Ni-Cr alloys in wet air

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

For automotive exhaust valve applications, future vehicles will need affordable, durable materials capable of operating at higher temperatures with predictable response to severe oxidizing environments. Both commercial and model Ni-based alloys were tested in 1-h cycles at 800-950°C in wet air, and the oxide scales formed on wrought Ni-(14-25) wt%Cr binary alloys were characterized to gain a better understanding of the behavior of chromia-forming alloys under these conditions. The mass change curves were used to quantify the behavior of the tested alloys and fit growth and spallation rates using the kp-p model. We systematically analyzed the correlation between elemental alloy compositions and the manually fitted kp and p values to select high-ranking features to be included in a machine learning analysis. The machine learning models for the rate, kp, could be trained with a surprisingly high accuracy even with limited data, while only modest fitting was obtained for p, the spallation parameter. A preliminary theoretical framework that can predict kp and p of hypothetical alloys was established, however, improving the accuracy of surrogate models is needed to assist in alloy development for this transportation application.

Original languageEnglish
Title of host publicationCorrosion Conference and Expo 2018
PublisherNational Assoc. of Corrosion Engineers International
ISBN (Print)9781510864405
StatePublished - 2018
EventCorrosion Conference and Expo 2018 - Phoenix, United States
Duration: Apr 15 2018Apr 19 2018

Publication series

NameNACE - International Corrosion Conference Series
Volume2018-April
ISSN (Print)0361-4409

Conference

ConferenceCorrosion Conference and Expo 2018
Country/TerritoryUnited States
CityPhoenix
Period04/15/1804/19/18

Funding

The authors would like to thank G. Garner, T. M. Lowe and T. Jordan for assistance with the experimental work. J. R. Keiser provided helpful comments on the manuscript. This research was sponsored by the U.S. Department of Energy, Vehicle Technologies Office, Propulsion Materials Program. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
U.S. Department of EnergyDE-AC05-00OR22725

    Keywords

    • Chromia scales
    • Correlation analysis
    • Cyclic oxidation
    • Exhaust valve
    • Machine learning
    • Mass change modeling
    • Ni alloy

    Fingerprint

    Dive into the research topics of 'Cyclic oxidation behavior of Ni-Cr alloys in wet air'. Together they form a unique fingerprint.

    Cite this