TY - GEN
T1 - Cyber-physical correlations for infrastructure resilience
T2 - 17th International Conference on Information Fusion, FUSION 2014
AU - Rao, Nageswara S.V.
AU - Ma, Chris Y.T.
AU - He, Fei
AU - Zhuang, Jun
AU - Yau, David K.Y.
N1 - Publisher Copyright:
© 2014 International Society of Information Fusion.
PY - 2014/10/3
Y1 - 2014/10/3
N2 - In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resilience problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.
AB - In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resilience problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.
UR - http://www.scopus.com/inward/record.url?scp=84910632829&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84910632829
T3 - FUSION 2014 - 17th International Conference on Information Fusion
BT - FUSION 2014 - 17th International Conference on Information Fusion
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 7 July 2014 through 10 July 2014
ER -