Abstract
In certain critical infrastructures, correlations between cyber and physical components can be exploited to launch strategic attacks, so that disruptions to one component may affect others and possibly the entire infrastructure. Such correlations must be explicitly taken into account in ensuring the survival of the infrastructure. For large discrete infrastructures characterized by the number of cyber and physical components, we characterize the cyber-physical interactions at two levels: (i) the cyber-physical failure correlation function specifies the conditional survival probability of the cyber sub-infrastructure given that of the physical sub-infrastructure (both specified by their marginal probabilities), and (ii) individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions expressed in terms of their multiplier functions. We formulate an abstract problem of ensuring the survival probability of a cyber-physical infrastructure with discrete components as a game between the provider and attacker, whose utility functions are composed of infrastructure survival probability terms and cost terms, both expressed in terms of the number of components attacked and reinforced. We derive Nash equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure survival probability on cost terms, correlation functions, multiplier functions, and sub-infrastructure survival probabilities. We apply these analytical results to characterize the defense postures of simplified models of metro systems, cloud computing infrastructures, and smart power grids.
Original language | English |
---|---|
Article number | 52 |
Journal | Games |
Volume | 9 |
Issue number | 3 |
DOIs | |
State | Published - Sep 2018 |
Funding
This work is funded by the Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, U.S. Department of Energy, and by Extreme Scale Systems Center, sponsored by U. S. Department of Defense, and performed at Oak Ridge National Laboratory managed by UT-Battelle, LLC for U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Funding: This work is funded by the Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, U.S. Department of Energy, and by Extreme Scale Systems Center, sponsored by U. S. Department of Defense, and performed at Oak Ridge National Laboratory managed by UT-Battelle, LLC for U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Keywords
- Aggregated correlations functions
- And composite utility functions
- Cyber-physical infrastructures
- Networked systems
- Product-form
- Sum-form