Abstract
Additive manufacturing processes supplement traditional material processing routes with unique capabilities which can have profound impacts on component production. Physical prototyping is accelerated and the fabrication of complex components, difficult or impossible to produce conventionally, is realized. Metals research is often focused on identifying process windows to avoid defects which thereby yield desirable properties. In electron beam melting fusion processes, however, precise spatial control of the heat source allows for detailed microstructure manipulation. Design is therefore extended to the microstructure scale offering greater overall flexibility towards engineering high performance components. In this work the role of geometry and beam path sequencing in a powder bed electron beam melting process is investigated. It is observed that by carefully engineering the melting sequence the morphology and texture at the mesoscale can be controlled. Solidification in the build direction, which usually prefers [001] directions, is tilted by control of the heat flux vector which yields large columnar crystals with a strong [011] build direction preference. This newly developed conduction control strategy is demonstrated for producing alternating mesoscale structures in bulk samples. Furthermore, a new scanning strategy is demonstrated which may be suitable for promoting a randomized crystallographic texture during the additive manufacturing process.
Original language | English |
---|---|
Article number | 109010 |
Journal | Materials and Design |
Volume | 195 |
DOIs | |
State | Published - Oct 2020 |
Funding
Research was sponsored by the US Department of Energy , Office of Energy Efficiency and Renewable Energy , Advanced Manufacturing Office , and Office of Fossil Energy , Crosscutting Research Program, under contract DE-AC05-00OR22725 with UT-Battelle LLC and performed in partiality at the Oak Ridge National Laboratory's Manufacturing Demonstration Facility, an Office of Energy Efficiency and Renewable Energy user facility. Notice of Copyright: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).
Keywords
- Additive manufacturing
- Electron beam melting
- Microstructure control
- Ni-based superalloys
- Solidification