TY - CONF
T1 - Creep-rupture behavior of precipitation-strengthened NI-based alloys under advanced ultrasupercritical steam conditions
AU - Tortorelli, P. F.
AU - Unocic, K. A.
AU - Wang, H.
AU - Santella, M. L.
AU - Shingledecker, J. P.
PY - 2014
Y1 - 2014
N2 - To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing in A-USC boilers. Two alloys were considered to have potential for this application: Inconel® 740 and Haynes® 282® alloy. In support of this application, creep-rupture testing of several heats of Inconel 740 was conducted over a range of temperatures and stresses to develop confidence in qualitatively predicting creep lifetimes under conditions relevant to A-USC steam conditions, with the longest rupture times exceeding 30,000 h. For comparison, the creep-rupture behavior of Haynes 282 alloy was mapped as a function of temperature and stress, but with a significantly smaller dataset. Only a small difference in creep-rupture results between Inconel 740 and Inconel 740H was found although the latter alloy showed significantly greater resistance to η phase formation during testing. Little effect of prior aging treatments (for setting the γ′ precipitate structure) on creep-rupture behavior was observed. Results from a modified power law analysis showed that, while both Inconel 740 and Haynes 282 are projected to meet the A-USC lifetime requirements, the latter offered the potential for better long-term creep resistance.
AB - To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing in A-USC boilers. Two alloys were considered to have potential for this application: Inconel® 740 and Haynes® 282® alloy. In support of this application, creep-rupture testing of several heats of Inconel 740 was conducted over a range of temperatures and stresses to develop confidence in qualitatively predicting creep lifetimes under conditions relevant to A-USC steam conditions, with the longest rupture times exceeding 30,000 h. For comparison, the creep-rupture behavior of Haynes 282 alloy was mapped as a function of temperature and stress, but with a significantly smaller dataset. Only a small difference in creep-rupture results between Inconel 740 and Inconel 740H was found although the latter alloy showed significantly greater resistance to η phase formation during testing. Little effect of prior aging treatments (for setting the γ′ precipitate structure) on creep-rupture behavior was observed. Results from a modified power law analysis showed that, while both Inconel 740 and Haynes 282 are projected to meet the A-USC lifetime requirements, the latter offered the potential for better long-term creep resistance.
UR - http://www.scopus.com/inward/record.url?scp=84900437479&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:84900437479
SP - 131
EP - 142
T2 - 7th International Conference on Advances in Materials Technology for Fossil Power Plants
Y2 - 22 October 2013 through 25 October 2013
ER -