TY - GEN
T1 - Creep modeling for injection-molded long-fiber thermoplastics
AU - Nguyen, Ba Nghiep
AU - Kunc, Vlastimil
AU - Bapanapalli, Satish K.
PY - 2009
Y1 - 2009
N2 - This paper proposes a model to predict the creep response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the nonlinear viscoelastic behavior described by the Schapery's model. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber length and orientation distributions were measured and used in the analysis that applies the Eshelby's equivalent inclusion method, the Mori-Tanaka assumption (termed the Eshelby-Mori-Tanaka approach) and the fiber orientation averaging technique to compute the overall strain increment resulting from an overall constant applied stress during a given time increment. The creep model for LFTs has been implemented in the ABAQUS finite element code via user-subroutines and has been validated against the experimental creep data obtained for long-glass-fiber/polypropylene specimens. The effects of fiber orientation and length distributions on the composite creep response are determined and discussed.
AB - This paper proposes a model to predict the creep response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the nonlinear viscoelastic behavior described by the Schapery's model. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber length and orientation distributions were measured and used in the analysis that applies the Eshelby's equivalent inclusion method, the Mori-Tanaka assumption (termed the Eshelby-Mori-Tanaka approach) and the fiber orientation averaging technique to compute the overall strain increment resulting from an overall constant applied stress during a given time increment. The creep model for LFTs has been implemented in the ABAQUS finite element code via user-subroutines and has been validated against the experimental creep data obtained for long-glass-fiber/polypropylene specimens. The effects of fiber orientation and length distributions on the composite creep response are determined and discussed.
UR - http://www.scopus.com/inward/record.url?scp=69949116466&partnerID=8YFLogxK
U2 - 10.1115/IMECE2008-66335
DO - 10.1115/IMECE2008-66335
M3 - Conference contribution
AN - SCOPUS:69949116466
SN - 9780791848739
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings
SP - 511
EP - 516
BT - 2008 Proceedings of ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
T2 - 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Y2 - 31 October 2008 through 6 November 2008
ER -