TY - JOUR
T1 - Crack roughness in the two-dimensional random threshold beam model
AU - Nukala, Phani K.V.V.
AU - Zapperi, Stefano
AU - Alava, Mikko J.
AU - Šimunović, Srdan
PY - 2008/10/13
Y1 - 2008/10/13
N2 - We study the scaling of two-dimensional crack roughness using large scale beam lattice systems. Our results indicate that the crack roughness obtained using beam lattice systems does not exhibit anomalous scaling in sharp contrast to the simulation results obtained using scalar fuse lattices. The local and global roughness exponents (ζloc and ζ, respectively) are equal to each other, and the two-dimensional crack roughness exponent is estimated to be ζloc =ζ=0.64±0.02. Removal of overhangs (jumps) in the crack profiles eliminates even the minute differences between the local and global roughness exponents. Furthermore, removing these jumps in the crack profile completely eliminates the multiscaling observed in other studies. We find that the probability density distribution p [Δh (l)] of the height differences Δh (l) = [h (x+l) -h (x)] of the crack profile obtained after removing the jumps in the profiles follows a Gaussian distribution even for small window sizes (l).
AB - We study the scaling of two-dimensional crack roughness using large scale beam lattice systems. Our results indicate that the crack roughness obtained using beam lattice systems does not exhibit anomalous scaling in sharp contrast to the simulation results obtained using scalar fuse lattices. The local and global roughness exponents (ζloc and ζ, respectively) are equal to each other, and the two-dimensional crack roughness exponent is estimated to be ζloc =ζ=0.64±0.02. Removal of overhangs (jumps) in the crack profiles eliminates even the minute differences between the local and global roughness exponents. Furthermore, removing these jumps in the crack profile completely eliminates the multiscaling observed in other studies. We find that the probability density distribution p [Δh (l)] of the height differences Δh (l) = [h (x+l) -h (x)] of the crack profile obtained after removing the jumps in the profiles follows a Gaussian distribution even for small window sizes (l).
UR - http://www.scopus.com/inward/record.url?scp=54549118265&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.78.046105
DO - 10.1103/PhysRevE.78.046105
M3 - Article
AN - SCOPUS:54549118265
SN - 1539-3755
VL - 78
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 4
M1 - 046105
ER -