TY - JOUR
T1 - Coupled interactions of a helical precessing vortex core and the central recirculation bubble in a swirl flame at elevated power density
AU - Zhang, Robert
AU - Boxx, Isaac
AU - Meier, Wolfgang
AU - Slabaugh, Carson D.
N1 - Publisher Copyright:
© 2019 The Combustion Institute
PY - 2019/4
Y1 - 2019/4
N2 - The PRECCINSTA GTMC was studied at elevated pressure and power density with 6 kHz stereoscopic particle image velocimetry (SPIV), OH* chemiluminescence (CL), and 100 kHz dynamic pressure measurements. This technically premixed, swirl stabilized flame exhibited self-excited thermoacoustic oscillations with limit-cycle behavior. A helical precessing vortex core (PVC) was detected within the inner shear layer, between the central recirculation bubble (CRB) and the reactant jets. The PVC was found to be the delineating flow feature for combustion dynamics even at elevated pressure. Sparse dynamic mode decomposition (DMD) of the velocity fields deconvolved the dynamics into a thermoacoustic and PVC mode. The precession of the PVC was at a non-harmonic frequency to the thermoacoustic oscillations, and at least twice that of findings at atmospheric conditions. Nevertheless, the continuous and persistent structure of the PVC allows it promote unsteady heat release to sustain the thermoacoustic cycle. The three dimensional structure of the reactant jets, central recirculation bubble, and PVC was reconstructed by double phase conditioning the reconstructed velocity field. The surface of the CRB was observed to transition between asymmetric and symmetric states depending on the thermoacoustic phase. Analysis of the swirling strength values on the CRB surface indicates the interaction strength between the hydrodynamic structures of the PVC and CRB. When this coupling is large, the heat release determined by the mean OH*-CL intensity is maximum. These findings indicate a critical role of the PVC and CRB interaction on combustion in unstable swirl flames at conditions closer to those found in a modern gas turbine engine.
AB - The PRECCINSTA GTMC was studied at elevated pressure and power density with 6 kHz stereoscopic particle image velocimetry (SPIV), OH* chemiluminescence (CL), and 100 kHz dynamic pressure measurements. This technically premixed, swirl stabilized flame exhibited self-excited thermoacoustic oscillations with limit-cycle behavior. A helical precessing vortex core (PVC) was detected within the inner shear layer, between the central recirculation bubble (CRB) and the reactant jets. The PVC was found to be the delineating flow feature for combustion dynamics even at elevated pressure. Sparse dynamic mode decomposition (DMD) of the velocity fields deconvolved the dynamics into a thermoacoustic and PVC mode. The precession of the PVC was at a non-harmonic frequency to the thermoacoustic oscillations, and at least twice that of findings at atmospheric conditions. Nevertheless, the continuous and persistent structure of the PVC allows it promote unsteady heat release to sustain the thermoacoustic cycle. The three dimensional structure of the reactant jets, central recirculation bubble, and PVC was reconstructed by double phase conditioning the reconstructed velocity field. The surface of the CRB was observed to transition between asymmetric and symmetric states depending on the thermoacoustic phase. Analysis of the swirling strength values on the CRB surface indicates the interaction strength between the hydrodynamic structures of the PVC and CRB. When this coupling is large, the heat release determined by the mean OH*-CL intensity is maximum. These findings indicate a critical role of the PVC and CRB interaction on combustion in unstable swirl flames at conditions closer to those found in a modern gas turbine engine.
KW - Combustion dynamics
KW - Gas turbine
KW - High pressure
KW - Laser diagnostics
KW - Turbulent swirl flame
UR - http://www.scopus.com/inward/record.url?scp=85060271478&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2018.12.035
DO - 10.1016/j.combustflame.2018.12.035
M3 - Article
AN - SCOPUS:85060271478
SN - 0010-2180
VL - 202
SP - 119
EP - 131
JO - Combustion and Flame
JF - Combustion and Flame
ER -