Coulomb spin liquid in anion-disordered pyrochlore Tb2Hf2O7

Romain Sibille, Elsa Lhotel, Monica Ciomaga Hatnean, Gøran J. Nilsen, Georg Ehlers, Antonio Cervellino, Eric Ressouche, Matthias Frontzek, Oksana Zaharko, Vladimir Pomjakushin, Uwe Stuhr, Helen C. Walker, Devashibhai T. Adroja, Hubertus Luetkens, Chris Baines, Alex Amato, Geetha Balakrishnan, Tom Fennell, Michel Kenzelmann

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. Here we demonstrate in the pyrochlore Tb2Hf2O7, that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cations remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.

Original languageEnglish
Article number892
JournalNature Communications
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2017

Funding

We thank C. Paulsen for the use of his magnetometers; P. Lachkar for help with the PPMS; M. Bartkowiak and M. Zolliker for help with the dilution fridge experiments at SINQ; S. Turc for help with the dilution fridge experiment at ILL. The work at the University of Warwick was supported by the EPSRC, UK, through Grant EP/M028771/1. Neutron scattering experiments were carried out at the continuous spallation neutron source SINQ at the Paul Scherrer Institut at Villigen PSI in Switzerland. The μSR experiments were carried out at the Swiss Muon Source SµS at the Paul Scherrer Institut at Villigen PSI in Switzerland. X-ray powder diffraction data were collected at the Materials Science × 04SA beamline of the Swiss Light Source (SLS) synchrotron facility at the Paul Scherrer Institut at Villigen PSI in Switzerland. We acknowledge the Institut Laue Langevin, ILL (Grenoble, France, EU) and the ISIS neutron facility (UK) for the allocated beamtime. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. We acknowledge funding from the European Community’s Seventh Framework Programme (Grants No. 290605, COFUND: PSI-FELLOW; and No. 228464, Research Infrastructures under the FP7 Capacities Specific Programme, MICROKELVIN), and the Swiss National Science Foundation (Grants No. 200021_140862 and No. 200021_138018).

FundersFunder number
EPSRC, UK,EP/M028771/1
FP7 Capacities Specific Programme
Seventh Framework Programme228464, 290605
Seventh Framework Programme
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung200021_138018, 200021_140862
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Seventh Framework Programme

    Fingerprint

    Dive into the research topics of 'Coulomb spin liquid in anion-disordered pyrochlore Tb2Hf2O7'. Together they form a unique fingerprint.

    Cite this