Abstract
Advances in material design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) compared to their "conventional" counterparts, in addition to the well-known better ambient stability. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with a well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using various characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the diffusion of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The diffusion occurs when residual solvent molecules in the spun-cast film act as a plasticizer. Addition of DIO to the casting solution results in more PC71BM diffusion and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.
Original language | English |
---|---|
Pages (from-to) | 15576-15583 |
Number of pages | 8 |
Journal | Nanoscale |
Volume | 7 |
Issue number | 38 |
DOIs | |
State | Published - Oct 14 2015 |