TY - GEN
T1 - Correlated formation and stability of SIA loops and stacking fault tetrahedra in high energy displacement cascades in copper
AU - Voskoboinikov, Roman E.
AU - Osetsky, Yuri N.
AU - Bacon, David J.
PY - 2006
Y1 - 2006
N2 - Atomistic modeling was conducted for an investigation of primary damage creation, self-interstitial and vacancy clusters formation, and their stability in high energy displacement cascades in copper The simulations were carried out for a wide range of temperatures (100 K ≤ T ≤ 900 K) and primary knock-on atom (PKA) energies 5 keV ≤ Epha ≤ 2.5 keV. This study of over 400 cascades is the largest yet reported for this metal. At least 20 cascades for each (Epka, T) pair were simulated in order to ensure statistical reliability of the results. The number of surviving point defects for each cascade and the mean value for cascades at the same temperature and PKA energy were found. The corresponding fraction of self-interstitial atoms (SIA) in dislocation loops and vacancies in stacking fault tetrahedron (SFT)-like clusters was calculated. Strong spatial and size correlation of SFTs and SIA clusters at low temperatures were established. In the context of high dose irradiation and the spatial overlap of displacement cascades, the stability of SFTs and dislocation loops inside an overlapping cascade region was investigated. It was observed that an SFT destroyed in the collision phase by a cascade is always recreated. On being completely enveloped by the region of displaced atoms, both SFT and SIA dislocation loops are destroyed with corresponding decrease of the number of residual point defects, whereas partial overlapping leads to increase in size of both types of cluster.
AB - Atomistic modeling was conducted for an investigation of primary damage creation, self-interstitial and vacancy clusters formation, and their stability in high energy displacement cascades in copper The simulations were carried out for a wide range of temperatures (100 K ≤ T ≤ 900 K) and primary knock-on atom (PKA) energies 5 keV ≤ Epha ≤ 2.5 keV. This study of over 400 cascades is the largest yet reported for this metal. At least 20 cascades for each (Epka, T) pair were simulated in order to ensure statistical reliability of the results. The number of surviving point defects for each cascade and the mean value for cascades at the same temperature and PKA energy were found. The corresponding fraction of self-interstitial atoms (SIA) in dislocation loops and vacancies in stacking fault tetrahedron (SFT)-like clusters was calculated. Strong spatial and size correlation of SFTs and SIA clusters at low temperatures were established. In the context of high dose irradiation and the spatial overlap of displacement cascades, the stability of SFTs and dislocation loops inside an overlapping cascade region was investigated. It was observed that an SFT destroyed in the collision phase by a cascade is always recreated. On being completely enveloped by the region of displaced atoms, both SFT and SIA dislocation loops are destroyed with corresponding decrease of the number of residual point defects, whereas partial overlapping leads to increase in size of both types of cluster.
KW - Computer simulation
KW - Dislocation loop
KW - Displacement cascade
KW - High dose irradiation
KW - Radiation damage
KW - Stacking fault tetrahedron
UR - http://www.scopus.com/inward/record.url?scp=70249103535&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:70249103535
SN - 0803134010
SN - 9780803134010
T3 - ASTM Special Technical Publication
SP - 285
EP - 298
BT - Effects of Radiation on Materials
PB - American Society for Testing and Materials
T2 - 22nd Symposium on Effects of Radiation on Materials
Y2 - 8 June 2004 through 10 June 2004
ER -