Abstract
A pinhole camera using four-channel resistive bolometers was designed and implemented on the Prototype Material Plasma Exposure eXperiment (Proto-MPEX) to measure the plasma radiated power. Quantification of the radiated power is required for comprehensive power balance assessments but faces unique challenges on linear plasma devices due to weak absolute signal, compared to typical use in toroidal fusion plasmas, and high neutral pressure changes. Around 1 mTorr, the pressure-driven signal contribution was shown to overwhelm the radiated power signal in Proto-MPEX, found to be ∼ 3~μ W. Since the pressure-driven signals could not be predicted from first principle arguments, the signals were corrected using empirical models that take two experimental pressure measurements and the raw bolometer signal to reveal the radiated power signals. Four 'gas-only' Proto-MPEX shots were taken, without the radio frequency (rf) plasma discharge, to train, optimize, and validate empirical models. The data included two pressure measurements at different locations along with the bolometer signal. Multiple models were tested; partial least-squares regression with a cross correlation method to account for the time offset in the pressure measurements provided the best combination of accuracy and stability. The model was validated to have a modeling error of 0.0036 V, which was lower than 10% of the expected radiated power signal. The model was tested on a different 'gas-only' shot with a complete time-series data. For plasma operation shots, the corrected bolometer measurements were compared with an absolute extreme ultraviolet photodiode measurement and similarities and differences are discussed.
Original language | English |
---|---|
Article number | 9064697 |
Pages (from-to) | 1649-1654 |
Number of pages | 6 |
Journal | IEEE Transactions on Plasma Science |
Volume | 48 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2020 |
Funding
Manuscript received July 18, 2019; revised February 19, 2020; accepted March 25, 2020. Date of publication April 13, 2020; date of current version June 10, 2020. This work was supported in part by the U.S. Department of Energy (D.O.E.) under Contract DE-AC05-00OR22725 and in part by the Princeton Plasma Physics Laboratory (PPPL). The review of this article was arranged by Senior Editor G. H. Neilson. (Corresponding author: Seungsup Lee.) Seungsup Lee, David Donovan, and Jamie Coble are with the Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 USA (e-mail: [email protected]).
Keywords
- Bolometry
- empirical modeling
- error correction
- plasma diagnostics