Coordinated wind power plant control for frequency support under wake effects

Chunghun Kim, Yonghao Gui, Chung Choo Chung

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

As the wind power penetration level increases, the inertial response of a wind power plant (WPP) is important to the grid under load and generation imbalance. In this paper, we present coordinated WPP control for frequency support under wake effects. By de-loading the power from a WPP, the inertial response can be obtained from the kinetic energy of wind turbine rotors. The coordinated WPP control considering wake effects improves the inertial response of WPP by preventing the rotor speed recovery period, which is unfavorable during a frequency drop. The proposed frequency support scheme could prevent large generation reduction right after an inertial response. In addition, more power generation is available when a WPP uses both primary and secondary control. To validate the performance, a WPP with three wind turbines was used as a case study with wake, turbine, and generator models.

Original languageEnglish
Title of host publication2015 IEEE Power and Energy Society General Meeting, PESGM 2015
PublisherIEEE Computer Society
ISBN (Electronic)9781467380409
DOIs
StatePublished - Sep 30 2015
Externally publishedYes
EventIEEE Power and Energy Society General Meeting, PESGM 2015 - Denver, United States
Duration: Jul 26 2015Jul 30 2015

Publication series

NameIEEE Power and Energy Society General Meeting
Volume2015-September
ISSN (Print)1944-9925
ISSN (Electronic)1944-9933

Conference

ConferenceIEEE Power and Energy Society General Meeting, PESGM 2015
Country/TerritoryUnited States
CityDenver
Period07/26/1507/30/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

Keywords

  • coordinated control
  • inertial response
  • wake effect
  • wind power plant control

Fingerprint

Dive into the research topics of 'Coordinated wind power plant control for frequency support under wake effects'. Together they form a unique fingerprint.

Cite this