Abstract
Ion pair receptor 3 bearing an anion binding site and multiple cation binding sites has been synthesized and shown to function in a novel binding-release cycle that does not necessarily require displacement to effect release. The receptor forms stable complexes with the test cesium salts, CsCl and CsNO 3, in solution (10% methanol-d 4 in chloroform-d) as inferred from 1H NMR spectroscopic analyses. The addition of KClO 4 to these cesium salt complexes leads to a novel type of cation metathesis in which the "exchanged" cations occupy different binding sites. Specifically, K + becomes bound at the expense of the Cs + cation initially present in the complex. Under liquid-liquid conditions, receptor 3 is able to extract CsNO 3 and CsCl from an aqueous D 2O layer into nitrobenzene-d 5 as inferred from 1H NMR spectroscopic analyses and radiotracer measurements. The Cs + cation of the CsNO 3 extracted into the nitrobenzene phase by receptor 3 may be released into the aqueous phase by contacting the loaded nitrobenzene phase with an aqueous KClO 4 solution. Additional exposure of the nitrobenzene layer to chloroform and water gives 3 in its uncomplexed, ion-free form. This allows receptor 3 to be recovered for subsequent use. Support for the underlying complexation chemistry came from single-crystal X-ray diffraction analyses and gas-phase energy-minimization studies.
Original language | English |
---|---|
Pages (from-to) | 1782-1792 |
Number of pages | 11 |
Journal | Journal of the American Chemical Society |
Volume | 134 |
Issue number | 3 |
DOIs | |
State | Published - Jan 25 2012 |