Abstract
Tape-cast pseudo-cubic zirconia pellets were surface irradiated by two coherent interfering high-power short-pulse Nd:YAG laser beams. The interfering beams of the third harmonic with a wavelength of 355 nm of a 2.5-ns Q-switched laser produced a line-like intensity distribution with a periodic distance of 3.3 μm due to the selected angle between the beams. The resulting nonuniform surface heating produced a microstructure consisting of ultrafine-grained zirconia with a grain size of about 10 nm within the top 100-200 nm depth of the treated surface region due to the high cooling rates during short-pulse laser processing (up to 10 10 K/s). The surface morphology closely followed the microperiodic heat treatment provided by the interfering laser beams. The pore size distribution within the periodic surface morphology ranged from a few nanometers to a maximum of half of the periodic line distances.
Original language | English |
---|---|
Pages (from-to) | 2138-2142 |
Number of pages | 5 |
Journal | Journal of the American Ceramic Society |
Volume | 91 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2008 |