Control-oriented modeling of cycle-to-cycle combustion variability at the misfire limit in SI engines

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

A control-oriented model is presented that can capture the prior-cycle correlation of combustion cycles during conditions with high levels of exhaust gas recirculation (EGR). Combustion events are modeled in discrete time and the dynamic evolution is captured by the residual air, fuel, and inert gas trapped in the combustion chamber. The mathematical formulation of the model is presented together with the calibration procedure to emulate a particular engine operating condition. A cycle-to-cycle system identification methodology is described which allows regressing model parameters from experimental data. Simulations are presented and compared to real engine measurements to show the modeling potential for analysis and control of combustion events.

Original languageEnglish
Title of host publicationIntelligent Transportation/Vehicles; Manufacturing; Mechatronics; Engine/After-Treatment Systems; Soft Actuators/Manipulators; Modeling/Validation; Motion/Vibration Control Applications; Multi-Agent/Networked Systems; Path Planning/Motion Control; Renewable/Smart Energy Systems; Security/Privacy of Cyber-Physical Systems; Sensors/Actuators; Tracking Control Systems; Unmanned Ground/Aerial Vehicles; Vehicle Dynamics, Estimation, Control; Vibration/Control Systems; Vibrations
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791884287
DOIs
StatePublished - 2020
EventASME 2020 Dynamic Systems and Control Conference, DSCC 2020 - Virtual, Online
Duration: Oct 5 2020Oct 7 2020

Publication series

NameASME 2020 Dynamic Systems and Control Conference, DSCC 2020
Volume2

Conference

ConferenceASME 2020 Dynamic Systems and Control Conference, DSCC 2020
CityVirtual, Online
Period10/5/2010/7/20

Funding

This research was supported by the DOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office, under the guidance of Gurpreet Singh and Michael Weis-miller, and used resources at the National Transportation Research Center, a DOE-EERE User Facility at Oak Ridge National Laboratory. †NOTICE: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
DOE-EERE
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
Oak Ridge National Laboratory

    Fingerprint

    Dive into the research topics of 'Control-oriented modeling of cycle-to-cycle combustion variability at the misfire limit in SI engines'. Together they form a unique fingerprint.

    Cite this