Abstract
Additive manufacturing (AM), also known as three-dimensional (3D) printing, is thriving as an effective and robust method in fabricating architected piezoelectric structures, yet most of the commonly adopted printing techniques often face the inherent speed-accuracy trade-off, limiting their speed in manufacturing sophisticated parts containing micro-/nanoscale features. Herein, stabilized, photo-curable resins comprising chemically functionalized piezoelectric nanoparticles (PiezoNPs) were formulated, from which microscale architected 3D piezoelectric structures were printed continuously via micro continuous liquid interface production (μCLIP) at speeds of up to ~60 μm s-1, which are more than 10 times faster than the previously reported stereolithography-based works. The 3D-printed functionalized barium titanate (f-BTO) composites reveal a bulk piezoelectric charge constant d33 of 27.70 pC N-1 with the 30 wt% f-BTO. Moreover, rationally designed lattice structures that manifested enhanced, tailorable piezoelectric sensing performance as well as mechanical flexibility were tested and explored in diverse flexible and wearable self-powered sensing applications, e.g., motion recognition and respiratory monitoring.
Original language | English |
---|---|
Article number | 9790307 |
Journal | Research |
Volume | 2022 |
DOIs | |
State | Published - 2022 |
Externally published | Yes |
Funding
The authors acknowledge the use of facilities within the Eyring Materials Center at Arizona State University. This work is funded by the Arizona State University (ASU) startup funding.