Abstract
A continuous-energy Monte Carlo neutron transport solver executing on GPUs has been developed within the Shift code. Several algorithmic approaches are considered, including both history-based and event-based implementations. Unlike in previous work involving multigroup Monte Carlo transport, it is demonstrated that event-based algorithms significantly outperform a history-based approach for continuous-energy transport as a result of increased device occupancy and reduced thread divergence. Numerical results are presented for detailed full-core models of a small modular reactor (SMR), including a model containing depleted fuel materials. These results demonstrate the substantial gains in performance that are possible with the latest-generation of GPUs. On the depleted SMR core configuration, an NVIDIA P100 GPU with 56 streaming multiprocessors provides performance equivalent to 90 CPU cores, and the latest V100 GPU with 80 multiprocessors offers the performance of more than 150 CPU cores.
Original language | English |
---|---|
Pages (from-to) | 236-247 |
Number of pages | 12 |
Journal | Annals of Nuclear Energy |
Volume | 128 |
DOIs | |
State | Published - Jun 2019 |
Funding
This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory , managed by UT-Battelle, LLC, for the U.S. Department of Energy. This research was supported by the Exascale Computing Project (ECP), project number 17-SC-20-SC. The ECP is a collaborative effort of two DOE organizations, the Office of Science and the National Nuclear Security Administration, that are responsible for the planning and preparation of a capable exascale ecosystem—including software, applications, hardware, advanced system engineering, and early testbed platforms—to support the nation’s exascale computing imperative. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Keywords
- GPU
- Monte Carlo
- Radiation transport