Abstract
Background: Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection. Results: Global gene expression was performed by a cross-species microarray approach using a potato cDNA microarray. The degree of potential cross-hybridization between probes was modeled by a novel computational workflow designed in-house. Probe annotations were updated by predicting probe-to-transcript hybridizations and combining information derived from other plant species. Comparing uninfected Vvpgip1-overexpressing lines to wild-type (WT), 318 probes showed significant change in expression. Functional groups of genes involved in metabolism and associated to the cell wall were identified and consequent cell wall analysis revealed increased lignin-levels in the transgenic lines, but no major differences in cell wall-derived polysaccharides. GO enrichment analysis also identified genes responsive to auxin, which was supported by elevated indole-acetic acid (IAA) levels in the transgenic lines. Finally, a down-regulation of xyloglucan endotransglycosylase/hydrolases (XTHs), which are important in cell wall remodeling, was linked to a decrease in total XTH activity. Conclusions: This evaluation of PGIP over-expressing plants performed under pathogen-free conditions to exclude the classical PGIP-ePG inhibition interaction indicates additional roles for PGIPs beyond the inhibition of ePGs.
Original language | English |
---|---|
Article number | 493 |
Journal | BMC Research Notes |
Volume | 4 |
DOIs | |
State | Published - 2011 |
Externally published | Yes |
Funding
This work was supported by funding from the National Research Foundation (NRF), the Wine Industry Network of Expertise and Technology (Winetech), the South African Table Grape Industry (SATI) and the South African Technology and Human Resources for Industry Programme (THRIP). Post-doctorial funding for EA was provided by Carl Tryggers Stiftelse för Vetenskaplig Forskning, Sweden, and for ENO by Claude Leon Foundation, South Africa. Andreas G.J. Tredoux, Institute for Wine Biotechnology is acknowledged for technical support in optimizing the hormone profile method.
Funders | Funder number |
---|---|
South African Technology and Human Resources for Industry Programme | |
Wine Industry Network of Expertise and Technology | |
Claude Leon Foundation | |
Carl Tryggers Stiftelse för Vetenskaplig Forskning | |
National Research Foundation of Korea |