Conductance of Threading Dislocations in InGaAs/Si Stacks by Temperature-CAFM Measurements

C. Couso, V. Iglesias, M. Porti, S. Claramunt, M. Nafría, N. Domingo, A. Cordes, G. Bersuker

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The stacks of III-V materials, grown on the Si substrate, that are considered for the fabrication of highly scaled devices tend to develop structural defects, in particular threading dislocations (TDs), which affect device electrical properties. We demonstrate that the characteristics of the TD sites can be analyzed by using the conductive atomic force microscopy technique with nanoscale spatial resolution within a wide temperature range. In the studied InGaAs/Si stacks, electrical conductance through the TD sites was found to be governed by the Poole-Frenkel emission, while the off-TDs conductivity is dominated by the thermionic emission process.

Original languageEnglish
Article number7422696
Pages (from-to)640-643
Number of pages4
JournalIEEE Electron Device Letters
Volume37
Issue number5
DOIs
StatePublished - May 2016
Externally publishedYes

Funding

This work was supported in part by the Departament d'Universitats, Recerca i Societat de la Informació within the Generalitat de Catalunya under Grant 2014SGR-384 and in part by the Ministerio de Economía y Competitividad and the Secretaría de Estado de Investigación, Desarrollo e Innovación through the European Regional Development Fund under Grant TEC2013-45638-C3-1-R.

FundersFunder number
Desarrollo e Innovación
Secretaría de Estado de Investigación
Generalitat de Catalunya2014SGR-384
Ministerio de Economía y Competitividad
Departament d'Universitats, Recerca i Societat de la Informació
European Regional Development FundTEC2013-45638-C3-1-R

    Keywords

    • CAFM
    • Poole Frenkel emission
    • semiconductor defects
    • thermionic emission
    • threading dislocation

    Fingerprint

    Dive into the research topics of 'Conductance of Threading Dislocations in InGaAs/Si Stacks by Temperature-CAFM Measurements'. Together they form a unique fingerprint.

    Cite this