Computer simulation of carbon diffusion and vacancy-carbon interaction in α-iron

K. Tapasa, A. V. Barashev, D. J. Bacon, Yu N. Osetsky

Research output: Contribution to journalArticlepeer-review

114 Scopus citations

Abstract

Static and dynamic properties of the interstitial carbon atom and vacancy-carbon atom complexes in α-iron are modelled by a molecular dynamics (MD) method using a pair interatomic potential for the iron-carbon interaction and two different many-body potentials for the iron matrix. The diffusion parameters of an interstitial solute in iron are obtained by MD simulation for the first time. The binding energy and migration energy of a vacancy-carbon complex are also obtained: the complex is immobile and has higher energy for dissociation than the carbon atom migration energy. The results are compared with recent ab initio calculations and experimental data from the literature. Experimental data on the recovery stages of electron-irradiated Fe-C are analysed using rate theory equations and found to be consistent with the ab initio calculations for diffusion of a vacancy and its interaction with carbon atoms.

Original languageEnglish
Pages (from-to)1-11
Number of pages11
JournalActa Materialia
Volume55
Issue number1
DOIs
StatePublished - Jan 2007

Funding

K.T. would like to thank the Science Service Division of the Ministry of Science and Environment, Thailand, for providing a studentship grant. The research was supported by a research grant from the UK Engineering and Physical Sciences Research Council and grant PERFECT (F160-CT-2003-508840) under programme EURATOM FP-6 of the European Commission.

FundersFunder number
Ministry of Science and Environment, Thailand
Engineering and Physical Sciences Research CouncilF160-CT-2003-508840
European Commission

    Keywords

    • Carbon diffusion
    • Carbon interstitial
    • Iron
    • Molecular dynamics
    • Vacancy-carbon complex

    Fingerprint

    Dive into the research topics of 'Computer simulation of carbon diffusion and vacancy-carbon interaction in α-iron'. Together they form a unique fingerprint.

    Cite this