TY - JOUR
T1 - Computationally Guided Discovery of Mixed Mn/Ni Perovskites for Solar Thermochemical Hydrogen Production at High H2 Conversion
AU - Morelock, Ryan J.
AU - Tran, Justin T.
AU - Trindell, Jamie A.
AU - Bare, Zachary J.L.
AU - McDaniel, Anthony H.
AU - Weimer, Alan W.
AU - Musgrave, Charles B.
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/6/11
Y1 - 2024/6/11
N2 - We identified the perovskite oxides LaMn0.5Ni0.5O3 (L2MN), Gd0.5La0.5Mn0.5Ni0.5O3 (GLMN), and GdMn0.5Ni0.5O3 (G2MN) as candidate solar thermal chemical hydrogen (STCH) redox mediators from their density functional theory (DFT)-computed electronic and oxygen vacancy properties following a high-throughput computational screening of AA′BB′O6 compositions that are likely to form as perovskites and split water. At a thermal reduction temperature of 1350 °C and a water splitting temperature of 850 °C, the L2MN and GLMN perovskites produced ∼65 μmol g-1 of hydrogen per cycle with no phase degradation over three redox cycles at 40 mol % steam, while the G2MN perovskite did not produce STCH under these conditions. When reoxidized by exposure to a gas flow with a H2O:H2 molar ratio of 1333:1, which represents operating conditions where the thermodynamic driving force of water splitting is lowered by orders of magnitude relative to 40 mol % steam, the L2MN and GLMN perovskites each produced ∼35 μmol g-1 of hydrogen per cycle. Guided by DFT, we propose that L2MN and GLMN’s STCH activities arise from B-site cation antisite defects that facilitate oxygen vacancy formation and thus redox cycling, whereas the synthesized G2MN has few antisite defects and is therefore inactive for STCH.
AB - We identified the perovskite oxides LaMn0.5Ni0.5O3 (L2MN), Gd0.5La0.5Mn0.5Ni0.5O3 (GLMN), and GdMn0.5Ni0.5O3 (G2MN) as candidate solar thermal chemical hydrogen (STCH) redox mediators from their density functional theory (DFT)-computed electronic and oxygen vacancy properties following a high-throughput computational screening of AA′BB′O6 compositions that are likely to form as perovskites and split water. At a thermal reduction temperature of 1350 °C and a water splitting temperature of 850 °C, the L2MN and GLMN perovskites produced ∼65 μmol g-1 of hydrogen per cycle with no phase degradation over three redox cycles at 40 mol % steam, while the G2MN perovskite did not produce STCH under these conditions. When reoxidized by exposure to a gas flow with a H2O:H2 molar ratio of 1333:1, which represents operating conditions where the thermodynamic driving force of water splitting is lowered by orders of magnitude relative to 40 mol % steam, the L2MN and GLMN perovskites each produced ∼35 μmol g-1 of hydrogen per cycle. Guided by DFT, we propose that L2MN and GLMN’s STCH activities arise from B-site cation antisite defects that facilitate oxygen vacancy formation and thus redox cycling, whereas the synthesized G2MN has few antisite defects and is therefore inactive for STCH.
UR - http://www.scopus.com/inward/record.url?scp=85194968094&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.3c02807
DO - 10.1021/acs.chemmater.3c02807
M3 - Article
AN - SCOPUS:85194968094
SN - 0897-4756
VL - 36
SP - 5331
EP - 5342
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 11
ER -