Computational investigation of hydrogen-induced phonon changes in carbon fiber

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Optical vibrational spectroscopy has shown promise as a noninvasive means of monitoring the mechanical properties of carbon fiber (CF), which is increasingly used for industrial and consumer purposes. However, interpretation of optical vibrational spectra for solid materials is inferential, particularly when defects are present. Because inelastic neutron scattering (INS) spectroscopy is not subject to selection rules, the full vibrational spectra can be measured. And, identifying correlations between INS features and tensile properties can assist in the interpretation of spectra from more commonly used optical vibrational spectroscopic techniques, such as Raman and infrared (IR) spectroscopy. Recent INS experiments on high-performance commercial carbon fibers showed features near 900 and 1100 cm−1 in addition to a broad feature near 3000 cm−1 that increased in intensity with decreasing tensile strength. These features were assigned to hydrogen defects. In the present work, we use density functional theory to simulate the INS spectra of several hydrogen defect geometries in graphite as a model for carbon fiber structure units, confirming the experimental assignment of these peaks to hydrogen modes and providing insights into the structure and lattice dynamics of the defects.

Original languageEnglish
Article number111884
JournalComputational Materials Science
Volume216
DOIs
StatePublished - Jan 5 2023

Funding

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
U.S. Department of Energy

    Keywords

    • Carbon fiber
    • Defects
    • Density functional theory
    • Simulated inelastic neutron scattering spectroscopy

    Fingerprint

    Dive into the research topics of 'Computational investigation of hydrogen-induced phonon changes in carbon fiber'. Together they form a unique fingerprint.

    Cite this