Computational insight into the structural organization of full-length toll-like receptor 4 Dimer in a model Phospholipid Bilayer

Mahesh Chandra Patra, Hyuk Kwon Kwon, Maria Batool, Sangdun Choi

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Toll-like receptors (TLRs) are a unique category of pattern recognition receptors that recognize distinct pathogenic components, often utilizing the same set of downstream adaptors. Specific molecular features of extracellular, transmembrane (TM), and cytoplasmic domains of TLRs are crucial for coordinating the complex, innate immune signaling pathway. Here, we constructed a full-length structural model of TLR4-a widely studied member of the interleukin-1 receptor/TLR superfamily-using homology modeling, protein-protein docking, and molecular dynamics simulations to understand the differential domain organization of TLR4 in a membrane-aqueous environment. Results showed that each functional domain of the membrane-bound TLR4 displayed several structural transitions that are biophysically essential for plasma membrane integration. Specifically, the extracellular and cytoplasmic domains were partially immersed in the upper and lower leaflets of the membrane bilayer. Meanwhile, TM domains tilted considerably to overcome the hydrophobic mismatch with the bilayer core. Our analysis indicates an alternate dimerization or a potential oligomerization interface of TLR4-TM. Moreover, the helical properties of an isolated TM dimer partly agree with that of the full-length receptor. Furthermore, membrane-absorbed or solvent-exposed surfaces of the toll/interleukin-1 receptor domain are consistent with previous X-ray crystallography and biochemical studies. Collectively, we provided a complete structural model of membrane-bound TLR4 that strengthens our current understanding of the complex mechanism of receptor activation and adaptor recruitment in the innate immune signaling pathway.

Original languageEnglish
Article number489
JournalFrontiers in Immunology
Volume9
Issue numberMAR
DOIs
StatePublished - Mar 12 2018
Externally publishedYes

Funding

This work was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A09001059, NRF 2012-0006687)

FundersFunder number
National Research Foundation of KoreaNRF-2015R1A2A2A09001059, NRF 2012-0006687

    Keywords

    • Adaptor recruitment
    • Full-length TLR
    • Molecular dynamics simulation
    • Plasma membrane
    • Signal transduction
    • TLR4

    Fingerprint

    Dive into the research topics of 'Computational insight into the structural organization of full-length toll-like receptor 4 Dimer in a model Phospholipid Bilayer'. Together they form a unique fingerprint.

    Cite this