Abstract
With the advent of additive manufacturing, lattice structures have been of increasing interest for engineering applications involving light-weighting and energy absorption. Several studies have investigated mechanical properties of various lattices made up of mostly unreinforced polymers and lack numerical analysis for reinforced lattice structures. In this paper, mechanical response of short fiber reinforced lattice structures under compression is investigated through experiments and numerical simulations. Three different 2D lattices namely, square grid, honeycomb, and isogrid along with their rotated counterparts were fabricated using 15% wt carbon fiber-acrylonitrile butadiene styrene and experimentally evaluated through uniaxial compression testing up to 30% strain. As simulations on fiber-reinforced lattices under large compressive strains are rarely performed and published, finite element models accounting for fiber orientation induced anisotropic mechanical properties and geometrical imperfections were developed to predict the stress–strain characteristics up to 30% compressive strains. The stress–strain curves predicted from the numerical simulations matches well with the experimental responses for various lattice geometries. Various failure mechanisms such as thin strut buckling, contact within the lattice, and fracture of struts under large deformation were investigated. Analyzing energy absorption characteristics of these lattices revealed that the honeycomb structures in horizontal configuration exhibits superior energy absorption capability.
Original language | English |
---|---|
Article number | e12701 |
Journal | Engineering Reports |
Volume | 5 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2023 |
Funding
This research was sponsored by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office and used resources at the Manufacturing Demonstration Facility, a DOE-EERE User Facility at Oak Ridge National Laboratory (ORNL). A portion of the research was also supported by an appointment to Advanced Short-Term Research Opportunity (ASTRO) Program and Higher Education Research Experiences (HERE) program, sponsored by the US Department of Energy and administered by the Oak Ridge Institute for Science and Education. This research was sponsored by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office and used resources at the Manufacturing Demonstration Facility, a DOE‐EERE User Facility at Oak Ridge National Laboratory (ORNL). A portion of the research was also supported by an appointment to Advanced Short‐Term Research Opportunity (ASTRO) Program and Higher Education Research Experiences (HERE) program, sponsored by the US Department of Energy and administered by the Oak Ridge Institute for Science and Education.
Funders | Funder number |
---|---|
DOE-EERE | |
U.S. Department of Energy | |
Office of Energy Efficiency and Renewable Energy | |
Oak Ridge National Laboratory | |
Oak Ridge Institute for Science and Education |
Keywords
- additive manufacturing
- composites
- compression
- energy absorption
- lattice
- material extrusion