TY - GEN
T1 - Comprehension of Spatial Constraints by Neural Logic Learning from a Single RGB-D Scan
AU - Yan, Fujian
AU - Wang, Dali
AU - He, Hongsheng
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Autonomous industrial assembly relies on the precise measurement of spatial constraints as designed by computer-aided design (CAD) software such as SolidWorks. This paper proposes a framework for an intelligent industrial robot to understand the spatial constraints for model assembly. An extended generative adversary network (GAN) with a 3D long short-term memory (LSTM) network was designed to composite 3D point clouds from a single RGB-D scan. The spatial constraints of the segmented point clouds are identified by a neural-logic network that incorporates general knowledge of spatial constraints in terms of first-order logic. The model was designed to comprehend a complete set of spatial constraints that are consistent with industrial CAD software, including left, right, above, below, front, behind, parallel, perpendicular, concentric, and coincident relations. The accuracy of 3D model composition and spatial constraint identification was evaluated by the RGB-D scans and 3D models in the ABC dataset. The proposed model achieved 57.23% intersection over union (IoU) in 3D model composition, and over 99% in comprehending all spatial constraints.
AB - Autonomous industrial assembly relies on the precise measurement of spatial constraints as designed by computer-aided design (CAD) software such as SolidWorks. This paper proposes a framework for an intelligent industrial robot to understand the spatial constraints for model assembly. An extended generative adversary network (GAN) with a 3D long short-term memory (LSTM) network was designed to composite 3D point clouds from a single RGB-D scan. The spatial constraints of the segmented point clouds are identified by a neural-logic network that incorporates general knowledge of spatial constraints in terms of first-order logic. The model was designed to comprehend a complete set of spatial constraints that are consistent with industrial CAD software, including left, right, above, below, front, behind, parallel, perpendicular, concentric, and coincident relations. The accuracy of 3D model composition and spatial constraint identification was evaluated by the RGB-D scans and 3D models in the ABC dataset. The proposed model achieved 57.23% intersection over union (IoU) in 3D model composition, and over 99% in comprehending all spatial constraints.
KW - logic rules
KW - neural-logic learning
KW - spatial constraints
UR - http://www.scopus.com/inward/record.url?scp=85124367365&partnerID=8YFLogxK
U2 - 10.1109/IROS51168.2021.9635939
DO - 10.1109/IROS51168.2021.9635939
M3 - Conference contribution
AN - SCOPUS:85124367365
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 9008
EP - 9013
BT - IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Y2 - 27 September 2021 through 1 October 2021
ER -