Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz - Cylindrical coordinates

Mack Kenamond, Matthew Bement, Mikhail Shashkov

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

We present a new discretization for 2D arbitrary Lagrangian-Eulerian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, total energy conserving and symmetry preserving. In the first part of the paper, we describe the discretization of the basic Lagrangian hydrodynamics equations in axisymmetric 2D rz geometry on general polygonal meshes. It exactly preserves planar, cylindrical and spherical symmetry of the flow on meshes aligned with the flow. In particular, spherical symmetry is preserved on polar equiangular meshes. The discretization conserves total energy exactly up to machine round-off on any mesh. It has a consistent definition of kinetic energy in the zone that is exact for a velocity field with constant magnitude. The method for discretization of the Lagrangian equations is based on ideas presented in [2,3,7], where the authors use a special procedure to distribute zonal mass to corners of the zone (subzonal masses). The momentum equation is discretized in its "Cartesian" form with a special definition of "planar" masses (area-weighted). The principal contributions of this part of the paper are as follows: a definition of "planar" subzonal mass for nodes on the z axis (r = 0) that does not require a special procedure for movement of these nodes; proof of conservation of the total energy; formulated for general polygonal meshes. We present numerical examples that demonstrate the robustness of the new method for Lagrangian equations on a variety of grids and test problems including polygonal meshes. In particular, we demonstrate the importance of conservation of total energy for correctly modeling shock waves. In the second part of the paper we describe the remapping stage of the arbitrary Lagrangian-Eulerian algorithm. The general idea is based on the following papers [25-28], where it was described for Cartesian coordinates. We describe a distribution-based algorithm for the definition of remapped subzonal densities and a local constrained-optimization-based approach for each zone to find the subzonal mass fluxes. In this paper we give a systematic and complete description of the algorithm for the axisymmetric case and provide justification for our approach.1 The ALE algorithm conserves total energy on arbitrary meshes and preserves symmetry when remapping from one equiangular polar mesh to another. The principal contributions of this part of the paper are the extension of this algorithm to general polygonal meshes and 2D rz geometry with requirement of symmetry preservation on special meshes. We present numerical examples that demonstrate the robustness of the new ALE method on a variety of grids and test problems including polygonal meshes and some realistic experiments. We confirm the importance of conservation of total energy for correctly modeling shock waves.

Original languageEnglish
Pages (from-to)154-185
Number of pages32
JournalJournal of Computational Physics
Volume268
DOIs
StatePublished - Jul 1 2014
Externally publishedYes

Funding

This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and supported by the DOE Advanced Simulation and Computing (ASC) program. The last author acknowledges the partial support of the DOE Office of Science ASCR Program.

FundersFunder number
DOE Advanced Simulation and Computing
U.S. Department of Energy
National Nuclear Security Administration
Los Alamos National LaboratoryDE-AC52-06NA25396
Adhesives and Sealant Council

    Keywords

    • Arbitrary lagrangian-eulerian methods
    • Compatible
    • Conservation
    • Cylindrical coordinates
    • Lagrangian hydrodynamics
    • Symmetry preservation

    Fingerprint

    Dive into the research topics of 'Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz - Cylindrical coordinates'. Together they form a unique fingerprint.

    Cite this