Abstract
Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects.
Original language | English |
---|---|
Pages (from-to) | 374-377 |
Number of pages | 4 |
Journal | Materials Science and Engineering: A |
Volume | 400-401 |
Issue number | 1-2 SUPPL. |
DOIs | |
State | Published - Jul 25 2005 |
Funding
This research was sponsored by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.
Funders | Funder number |
---|---|
U.S. Department of Energy | DE-AC05-00OR22725 |
Fusion Energy Sciences | |
Division of Materials Sciences and Engineering |
Keywords
- Cu
- Dislocation-obstacle interactions
- Fe
- Molecular dynamics
- Voids
- Yield stress